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ABSTRACT
Volumetric video (VV) streaming has drawn an increasing amount
of interests recently with the rapid advancements in consumer
VR/AR devices and the relevant multimedia and graphics research.
While the resource and performance challenges in volumetric video
streaming have been actively investigated by the multimedia com-
munity, the potential security and privacy concerns with this new
type of multimedia have not been studied. We for the �rst time
identify an e�ective threat model that extracts 3D face models from
volumetric videos and compromises face ID-based authentications.
To defend against such attack, we develop a novel volumetric video
security mechanism, namelyVVSec, which makes benign use of
adversarial perturbations to obfuscate the security and privacy-
sensitive 3D face models. Such obfuscation ensures that the 3D
models cannot be exploited to bypass deep learning-based face
authentications. Meanwhile, the injected perturbations are not per-
ceivable by the end-users, maintaining the original quality of ex-
perience in volumetric video streaming. We evaluateVVSecusing
two datasets, including a set of frames extracted from an empirical
volumetric video and a public RGB-D face image dataset. Our eval-
uation results demonstrate the e�ectiveness of both the proposed
attack and defense mechanisms in volumetric video streaming.

CCS CONCEPTS
ˆ Security and privacy � Systems security; ˆ Information
systems � Multimedia streaming ;
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1 INTRODUCTION
Volumetric video (VV) is an emerging type of rich multimedia that
records objects and space in three dimensions (3D) with six degrees
of freedom (6-DOF), providing the users with fully immersive vir-
tual reality (VR) or augmented reality (AR) experiences [12, 32]. It
used to be depicted only in science �ction in the past decades [12].
However, with the recent developments in computer graphics and
high-performance VR/AR devices, volumetric video has witnessed
a gradual commercial development and deployment in the con-
sumer market [14, 27]. It has been regarded as the next genera-
tion of video type after the traditional 2D video and the recently
deployed 360-degree video [66], and the global volumetric video
market is estimated to grow from $1.4 billion in 2020 to $5.8 billion
by 2025 [22]. Di�erent from the pixel-based 2D and 360-degree
videos, volumetric video captures 3D objects, represented by 3D
meshes [57] or point clouds [58], with signi�cantly higher amount
of data and computation involved for capturing, storage, transmis-
sion, and rendering. Consequently, it poses signi�cant challenges
to the traditional video processing and streaming technologies.

To date, the state-of-the-art research e�orts have all been focus-
ing on addressing various resource and performance challenges in
volumetric video capturing [14, 27, 29], encoding [55, 63, 70], and
streaming [36, 64, 76], to make it deployable under the existing net-
work and video processing/streaming infrastructures. Although the
existing e�orts are still in the early stage, the challenges and solu-
tions under exploration resemble the community's past experiences

Poster Session B3: Multimedia System and Middleware  
& Multimedia Telepresence and Virtual/Augmented Reality

MM '20, October 12–16, 2020, Seattle, WA, USA 

3614



with 2D and 360-degree videos where there was a similarly large
gap between the capacity of the network/computation and the de-
mand. Given the past success in addressing these similar challenges,
it is foreseeable that the resource and performance challenges of
volumetric video streaming can be well addressed eventually, espe-
cially with the rapid advancements in 5G wireless networks [53]
and high-performance computing software/hardware stacks for
video processing [9, 18].

However, the community has not explored the potentialsecurity
and privacyvulnerabilities of volumetric video caused by its unique
characteristics, e.g., with 6-DOF 3D objects, which did not exist in
the traditional 2D or 360-degree videos.First, from the economic
and business point of view, the 3D objects precisely presented in
volumetric videos are signi�cantly more valuable assets than 2D or
360-degree video content, often involving copyrights or intellectual
properties that must be protected. While digital rights management
(DRM) mechanisms have been well studied and widely deployed
for 2D videos [4, 5, 23], the solution for protecting the even more
valuable volumetric video is desirable before they can be widely
deployed for consumer-facing applications.Second,in addition to
its economic values, the 3D models in volumetric videos, if leaked,
may trigger signi�cant security/privacy concerns as they may in-
volve rich information of human faces or other privacy-sensitive
objects [60] or lead to biometrics-based security exploits. The po-
tential security and privacy issues may become a critical roadblock
for the future deployment of volumetric video streaming, even after
all the current resource and performance challenges have been ef-
fectively addressed. In this paper, we aim to address this brand new
dimension of security and privacy challenges posed by volumetric
video streaming.

The most straightforward solution to the aforementioned secu-
rity and privacy issues is to conduct end-to-end encryption of the
volumetric video content coupled with a secure licence management
mechanism, similar to those adopted in the DRM for traditional 2D
videos [4, 5, 23]. However, under the context of volumetric video
streaming, the traditional encryption-based approach is subject to
the following two limitations.First, the performance and power
overhead of end-to-end encryption would increase considerably
in volumetric video given the signi�cantly increased data volume.
Such overhead could become even worse considering that the pri-
mary use case of volumetric video streaming is towards mobile
VR/AR devices with limited computation and power resources. In
addition, the highly interactive nature of the 6-DOF immersive
experience makes volumetric video very sensitive to any increase
of end-to-end transmission or processing delay.Second, end-to-end
encryption can still be subject to potential security vulnerabilities
even if a secure key management scheme is adopted. This is because
the video content must be eventually decrypted before showing
and, therefore, it could leave a traceable moment for the adversary
to retrieve the decrypted volumetric video content via either re-
verse engineering based on memory access patterns [79] or screen
recording of the displayed content.

To address the aforementioned limitations of end-to-end encryp-
tion, we developVVSec, the �rst multimedia security framework
aiming to protect volumetric videos with a focus on the 3D face
models presented in the video content. The key idea ofVVSecis
to obfuscatethe volumetric video via a benign use of adversarial

examples [34, 73], which are small human non-perceivable per-
turbations added to the original video frames to mislead the deep
learning-based face recognition/authentication systems [78, 86]. In
particular, we propose to inject adversarial perturbations in the
target volumetric video, so that the adversary would fail to imper-
sonate the victim in face authentication by leveraging the extracted
3D face models. Additionally, we control the amount of introduced
perturbation for e�ective defense without impacting the quality
of experience (QoE) perceived by human users. While developing
VVSecand demonstrating its e�ectiveness, we make the following
major research contributions primarily targeting 3D face models
presented in volumetric videos.

� We for the �rst time develop an e�ective security threat model
exploiting volumetric video, in which the adversary extracts 3D
face models from the video and uses them to impersonate the
victim in deep learning-based face authentications;

� We for the �rst time develop an e�ective countermeasure to de-
fend against the potential volumetric video attack, which makes
benign use of adversarial perturbations to evade from the face
authentication attack while still maintaining the original quality
of experience to the end user; and

� We evaluateVVSecusing a set of frames extracted from an em-
pirical volumetric video, as well as a public RGB-D face dataset.
Our experimental results demonstrate the success of both the
proposed attack and defense mechanisms.

The remainder of the paper is organized as follows. Section 2 in-
troduces the background information of volumetric video streaming
and face authentication system that serve as the basis of the target
problem. Section 3 describes the proposed face authentication at-
tack using the facial information extracted from a volumetric video.
Section 4 presents the proposed defense mechanism via the benign
use of adversarial perturbation. Section 5 includes the experimental
results for both the attack and defense mechanisms. Section 6 sum-
marizes the closely related works toVVSec. Section 7 discusses the
limitations of VVSecthat we plan to explore and address in future
work. Finally, Section 8 concludes the paper.

2 BACKGROUND
2.1 Volumetric Video Streaming
Several formats for storing and presenting volumetric video con-
tent have been developed recently, such as point cloud-based vol-
umetric video [6, 51] and depth image (i.e., RGB-D)-based volu-
metric video [15, 77]. Di�erent vendors like Microsoft [7], 8i [6],
Depthkit [15], and several other companies [16, 31] have their
unique ways of capturing, rendering, and delivering the volumet-
ric videos. However, almost all of them take advantage of depth
cameras, such as Microsoft Kinect [2, 3] and Intel RealSense depth
cameras [20], to capture color and depth information at the same
time. Without loss of generality, we use the RGB-D based video
format from Depthkit [15] in our study of volumetric videos, as it
can be processed with the o�-the-shelf video coding techniques and
is compatible with the widely adopted video streaming standard,
e.g., Dynamic Adaptive Streaming over HTTP (DASH) [71].

Also, several research e�orts have been focusing on DASH-based
volumetric video streaming [39, 76]. Figure 1 shows a representa-
tive end-to-end volumetric video streaming system following the
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using either a virtual camera or a printed 3D mask [43]. The key
challenge in the attack procedure is for Malice to extract the RGB-D
face model from the volumetric video, which we discuss next.

Figure 3: The proposed volumetric video-enabled face au-
thentication attack.

3.2 Facial Information Extraction
We develop aFacial Information Extractorto accomplish the key step
of extracting the 3D facial information from the target volumetric
video, as shown in Figure 3. Also, Figure 4 shows the procedure of
facial information extraction. The upper half of the frame is the RGB
portion of the 3D model, and the lower part is the depth portion.
The depth portion uses RGB color to present the depth information,
where the scale of the hue value of the corresponding pixel follows
the scale of the depth. Malice �rst cuts a frame from the volumetric
video and, then, theFacial Information Extractorgenerates the RGB
image together with the depth image by cropping, rotating, and
expanding both the RGB and depth portions of the frame. Moreover,
the extractor translates the depth image to quantitative depth data
as the input to the face authentication system. In particular, it
reads the value of pixels in the HSV (hue, saturation, and value)
color space and maps the value ofhueto the correspondingdepth
value. Equation(1)reveals the relationship between thehueand
the depth, where� <0G and� <8= are the maximum and minimum
distances between the camera and the user, respectively, and4 is
the rescaling factor that ensures a reasonabledepthvalue for the
face authentication system.

34?C�=
�
¹� max � � minº � �D4 ¸ � min

�
�

4
� min

(1)

4 PROPOSED DEFENSE: VVSEC
4.1 Challenges of Protecting Volumetric Video
Generally speaking, protecting the con�dentiality of data is a well
studied and addressed problem in the security community, espe-
cially with the state-of-the-art hardware isolation-based trusted
execution environments (TEEs) [25] and the cryptographic algo-
rithms [59]. However, both categories of defense mechanisms have
their limitations in the speci�c scenario of volumetric video stream-
ing. First,hardware-based TEEs (e,g., ARM TrustZone and Intel
SGX) [1, 25] su�er from several vulnerabilities related to side chan-
nel attacks and hardware physical attacks [74, 75], which would

Figure 4: Our proposed procedure for facial information ex-
traction from volumetric video.

lead to the leakage of sensitive data.Second,no matter what kind
of end-to-end encryption strategies are employed, eventually the
video must be decrypted and stored in certain location of the mem-
ory in plaintext, which can be exposed to the attackers [47, 54].
Furthermore, encryption may worsen the performance (e.g., end-
to-end latency) of volumetric video streaming and raise the already
high power consumption of the computation-intensive multimedia
application dealing with 3D models.

4.2 Solution: Benign Use of Adversarial Attack
From the defense perspective, our observation is that the volumetric
video streaming is a very unique use case where the sensitive data
(i.e., Alice's 3D face model retrieved by Malice) must not pass the
deep learning-based authentication, while it must be perceivable by
human users as per the requirement of the video streaming appli-
cation. Such a requirement fordefenseis essentially a close match
with the state-of-the-art adversarialattackswhere an adversary
adds deliberately-designed perturbations to the original benign
inputs of a deep neural network. Such adversarial perturbations
are imperceptible to humans but would cause signi�cant degrada-
tions in the accuracy of the neural networks, leading to incorrect
inference results [34, 73].

Inspired by the nature of the adversarial attacks, we propose a
novel defense mechanisms,VVSec, to protect the con�dentiality of
volumetric video. In a nutshell,VVSecadds adversarial perturba-
tions at the sender (i.e., Alice) side of the volumetric video streaming,
so that even if Malice could extract the RGB-D facial information
in plaintext, the face authentication would fail due to the e�ect
of the "adversarial" perturbation on the deep neural network. On
the other hand, the original functionality of volumetric streaming
especially the perceivable quality of experience to human users
is unchanged, as ensured by the design principle of adversarial
perturbations [34, 73].

In order to fully understand the mechanism of adversarial at-
tacks, to date, numerous attack methods have been extensively
investigated. Goodfellow et al. [34] introduced the fast gradient
sign method (FGSM), which is a simple but e�ective technique to
quickly produce adversarial examples. The key idea of FGSM is
to utilize the gradients of the loss function with respect to inputs
to craft the adversarial perturbations in a single step. Inspired by
FGSM, researchers have proposed to take multiple steps of FGSM
(I-FGSM) [50, 56] in an iterative manner to achieve stronger at-
tack performance while keeping smaller perturbations. Moreover,
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C&W [26] attack is an optimization-based method, which can gen-
erate high-robustness adversarial examples that break many state-
of-the-art defense methods [28, 83]. Di�erent from the original
intent of the existing adversarial attacks, inVVSec, we make benign
use of adversarial attack to protect the 3D facial information in the
volumetric video, as described next.

4.3 Algorithm Design: Content-Aware
Adversarial Perturbation Generation

To clearly present the steps of our perturbation generation algo-
rithm, we de�ne the notations for the rest of the paper. Recall that
the goal of the face authentication system is to determine whether
the input face image belongs to the enrolled user (i.e., the user repre-
sented by the reference RGB-D input). The input imageGis denoted
as� � F � 2 where�•F•2 represent the height, width, and number
of channels, respectively. In particular,2 = 4 where the �rst three
channels represent RGB, and the last one is the depth (D) channel.
Next, we model the face authentication system as a function� ¹G•~º,
which takes a face imageGand the stored face image of the enrolled
legitimate user~ as inputs and outputs the similarity score( . Typi-
cally, if ( is under a certain prede�ned thresholdg, the input image
Gis considered passing the authentication. In this work, to prevent
the extracted frames of the volumetric video from passing the face
authentication, we aim to �nd an imperceptible perturbationXthat
could achieveG0 = G¸ Xsuch that( 0 = � ¹G0•~º ¡ g.

A volumetric video can contain one or more 3D objects, and the
extra space besides the objects is considered as background. If the
perturbation is added to the background portion of the volumetric
video, it can be obviously perceived by the user and signi�cantly
impact the quality of experience. Therefore, inVVSecwe develop a
content-aware perturbation generation algorithm to add the per-
turbation only to the 3D objects instead of the background. In a
nutshell, our algorithm takes advantage of the RGB-D data, where
the information of the object location could be approximately in-
ferred by the depth channel. Speci�cally, we �rst generate a boolean
maskU(U 2 f0•1gºwith the same size of the input imageG,

U¹=• ?•@º =
�
1; G¹=• ?•4º � Cand@� 3•
0; otherwise•

(2)

whereCis the prede�ned threshold. With the guidance of such
derived maskU, our desired content-aware adversarial perturbation
is calculated as:

G0 = �;8? ¹G¸ X� U•� n•̧ nº• (3)

where�;8? ¹�º denotes removing the values under certain noise
leveln to constrain the perturbations using the! 1 distance metric.
Since we keep all values for the last channel ofU as 0, no pixels
would be changed on the depth channel of the original inputG.

Next, we utilize an optimization-based attack method inspired
by � &, [26] to craft our content-aware adversarial examplesG0.
In particular, we formulate the adversarial perturbation generation
as the following optimization problem:

minimize !>BB= � � ¹G0•~º ¸ V k X k2• (4)

whereV is a pre-chosen constant to control the magnitude of the
perturbation. Speci�cally, the �rst term is the model prediction

score( 0, and the second term penalizes the perturbation magnitude.
Gradient descent is applied to �nd the optimal perturbation until
( 0 is larger than the thresholdg. Given that the face authentication
system mainly leverages the features extracted from the face model
to calculate the similarity score, our content-aware perturbation
generation targeting only the face portion of the frame would e�ec-
tively alter the authentication results with minimum perturbation.
The details of our adversarial perturbation generation algorithm
are presented in Algorithm 1.

Algorithm 1: Content-Aware Adversarial Perturbation
Generation

1 Input: Extracted facial imagesG, face authentication system
� ¹�º, enrolled face images~, identi�cation thresholdg,
attacking strengthn, penalty constantV.

2 Result: Adversarial perturbationX.
3 Initialize X  0;
4 Compute boolean maskUfollowing Equation (2);
5 G0  �;8? ¹G¸ X� U•� n•̧ nº;
6 ( 0  � ¹G0•~º;
7 while S' <g do
8 !>BB � � ¹G0•~º ¸ V k X k2;
9 Minimize !>BBto updateX;

10 end

5 EXPERIMENTAL RESULTS
In this section, we �rst evaluate the volumetric video-enabled attack
on the face authentication system. Then, we validate the e�ective-
ness ofVVSecin preventing the attack.

5.1 Experimental Setup
5.1.1 Volumetric video streaming system.In this work, we use a

pre-recorded volumetric video [15] from the Depthkit. On the server
side, we adopt the GPAC �lter [35] as both the encoder and the
DASH packager to generate the DASH segments from the source
video. Moreover, we deploy a web server using Node.js [17] to serve
the video segments. On the client side, we employ the Vimeo Depth
Player [77], which is a browser-based volumetric video player, to
process and play the video.

5.1.2 Datasets.We employ two datasets to evaluate the e�ec-
tiveness and performance ofVVSec, including a dataset containing
frames extracted from volumetric video [15] (i.e., Dataset #1) and
an RGB-D face dataset [38] (i.e., Dataset #2).

� Dataset #1 contains 11 RGB-D images of one user extracted from
the volumetric video demo in the Depthkit [15], in which we use
1 image as the reference input and 10 images as the user inputs
in our evaluation of face authentication.

� Dataset #2 [38] consists of 31 users with 17 di�erent poses each,
including 13 face orientations and 4 facial expressions (i.e., smil-
ing, sad, yawn, and angry). For each pose of each user, 3 images
are captured, making the total of 1581 RGB-D images in the
dataset. All the images are collected by a Microsoft Kinect v1
device [2].
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For both datasets, the RGB images are stored as a 32-bit bitmap
with resolution 1280� 960?G. The depth images are stored as plain-
text �les, where a depth value represents the corresponding depth
pixel, with resolution 640� 480?G. In our experiments, we crop and
re-scale all the face images to 200� 200?Gto meet the requirement
of the face authentication system [61]. In our evaluation of the at-
tack, we use Dataset #2 to train and validate the face authentication
model. While evaluating the proposed defense, we add the content
aware adversarial perturbations to both datasets.

5.1.3 Parameter Se�ings.In the face authentication system, we
use the same default parameter settings as in [61] for the face
authentication system. Note that it is our intention to adopt the
default settings, as the goal of this work is to demonstrate the
identi�ed new attack surface in typical and commonly used face
authentication systems, which is well represented by the default
settings in [61]. In particular, the Siamese network is trained with a
batch size of 16 on Dataset #2 for 50 epochs. Also, we use the Adam
optimizer [45] with the learning rate[ = 0”001 and the momentum
termsV1 = 0”9 andV2 = 0”999. Moreover, in the content-aware
adversarial perturbation described in Algorithm 1, we set the the
prede�ned thresholdCin Equation (2) as 0, the threshold of the
similarity scoreg as 0.4, attacking strengthn as 32/255, and penalty
constantVas 0. For the facial information extractor in Section 3.2,
we use Equation (1) to map the hue value to the depth value. In our
experiments,� <0G = 2370 and� <8= = 1270 in millimeters and
4 = 850.

5.1.4 Evaluation Metrics.To evaluate the e�ectiveness of the
defense, i.e., whetherVVSeccan successfully prevent the face au-
thentication attack, we use the success rate of face authentication
de�ned as follows:

BD224BB A0C4=
#>5 BD224BB5 D; 20B4B >5 345 4=B4

#>5 E0;83 C4BC 20B4B
(5)

In particular, if the original similarity score before adding the
perturbation is smaller than 0.4, we consider it as a valid test case,
i.e., the face authentication attack is successful. Then, for a valid
test case, if the similarity score after adding the perturbation is
greater than 0.4, we consider it as a successful case of defense.

Furthermore, we adopt the normalized L2 norm to quantify the
perturbations added byVVSec, which is a commonly used metric
in the adversarial attack research domain to evaluate the quality
impact of adversarial perturbations [26, 37, 73]:

?4ACDA10C8>==
k G� G0 k2

k Gk2
(6)

whereGis the user input face image, andG0 is the image with the
generated adversarial perturbation.

5.2 E�ectiveness of the Attack
We evaluate the e�ectiveness of the proposed attack by feeding a
pair of input images to the face authentication system. One is the
pre-enrolled user face image, namely the reference input; and the
other is the new face image for authentication, namely the user
input. Each reference or user input consists of an RGB image and
the corresponding depth image to represent the full RGB-D face
data. The face authentication system would output the similarity

Table 1: Quantitative evaluation results of both the attack
and the defense using 10 test cases from Dataset #1.

Case
Similarity

(Original)

Similarity

(VVSec)

Perturbation

(L2 norm)

Time

(second)

1 0.157 0.402 0.042 4.674

2 0.149 0.404 0.042 4.656

3 0.225 0.401 0.092 7.182

4 0.209 0.404 0.038 4.274

5 0.095 0.402 0.113 8.475

6 0.053 0.401 0.136 9.443

7 0.046 0.400 0.141 10.591

8 0.064 0.402 0.076 6.096

9 0.154 0.404 0.056 5.203

10 0.136 0.404 0.057 5.134

score between the two input images, which we use as an indicator
for the success of the attack. In particular, the attack is successful if
the similarity score is less than 0.4, as discussed in Section 5.1.4.

Table 1 demonstrates 10 test cases of face authentication using
Dataset #1. TheSimilarity (Original)column indicates the resulting
similarity score under the attack scenario. We observe that all the
original similarity scores are below the threshold 0.4, indicating that,
without VVSec, the attacker is able to impersonate the legitimate
user and successfully pass the face authentication in all the test
cases.

5.3 E�ectiveness of the Defense
We execute the adversarial perturbation generation algorithm (i.e.,
Algorithm 1) on both datasets to evaluate the e�ectiveness of the
defense. Table 1 shows the results of 10 test cases from Dataset #1.
First, we observe that withVVSecall the similarity scores, as shown
in the Similarity (VVSec)column, are larger than the threshold 0.4,
indicating that the RGB-D images containing the generated per-
turbations fail to pass the face authentication system and thus the
e�ectiveness of the defense.Second, we also present the quantitative
values of the perturbations in thePerturbation (L2 norm)column,
which vary among di�erent cases, as the perturbation generation
algorithm is content-dependent. In addition, the time costs of the
perturbation generation are shown in theTime (second)column,
ranging from around 4 to 11 seconds, which are acceptable ifVVSec
is used o�ine to generate the protected volumetric video for the
video-on-demand (VOD) streaming scenario.

We further evaluate the e�ectiveness and performance ofVVSec
on all the RGB-D images from Dataset #2. Among the 51 images
(i.e., 17 poses and 3 images per pose) of each user, we use the
one with front-facing pose as the reference input and the other
50 images as the user inputs for testing, which creates 1550 test
cases in total. Among these test cases, there are 1529 cases that
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Figure 5: Average similarity scores output by the face au-
thentication system for 31 users from Dataset #2 before and
after VVSecadding the adversarial perturbation.

Figure 6: Average adversarial perturbations generated for 31
users from Dataset #2.

are valid ones based on the de�nition presented in Section 5.1.4
(i.e., the original similarity score before adding the perturbation
is smaller than 0.4). Therefore, we conduct our experiments on
Dataset #2 with these 1529 test cases and present the results in
Figures 5 to 7. Figure 5 shows the average similarity scores with
and without perturbation added byVVSecfor di�erent users. All
the average similarities with perturbation are between 0.4 and 0.42,
indicating the failure of face authentication and thus the success
of defense accomplished byVVSec. Figure 6 reveals the average
perturbations added to the images are in the range of 0.003 to 0.029,
which vary among di�erent users. Lastly, Figure 7 presents the
average running time of perturbation generation, which ranges
from around 3 seconds to around 9 seconds per image. The results
con�rm our observations in Table 1 with Dataset #1, indicating that
VVSeccan be applied to VOD volumetric video streaming.

Overall, combining our experiments with both Dataset #1 and
Dataset #2, we have evaluated the defense mechanism provided by
VVSecusing 1560 test cases in total, 1539 of which are valid test
cases based on the de�nition in Section 5.1.4. Our experimental
results indicate that all the 1539 test cases successfully return a
larger than 0.4 similarity score whenVVSecis applied, achieving a
100% success rate of the defense.

Figure 7: Average running time of our content-aware adver-
sarial perturbation generation for 31 users from Dataset #2.

6 RELATED WORK
Benign Use of Adversarial Attack. As discussed in Section 4.2,
many research works have been focusing on adversarial perturba-
tion generation [34, 73]. Also, some researchers have utilized adver-
sarial attacks for benign use cases as a means of obfuscation. For
example, Yu et al. [87] developed an adversarial example generation
algorithm to protect mobile voice data from being eavesdropped
using automatic speech recognition. Xu et al. [85] developed a
framework called HAMPER to protect leaked images and voices
from malicious speech and image recognition by using adversarial
perturbations. OurVVSecis inspired by these existing works on
making benign use of adversarial attacks for security protections,
but we target a brand new and signi�cantly more challenging sce-
nario of volumetric video streaming.

Adversarial Attacks on 3D Models. Adversarial attacks on 3D
objects have recently been explored [40, 81, 82, 88]. For example,
Xiang et al. [81] proposed several algorithms to generate adversar-
ial examples targeting 3D point clouds. Xiao et al. [82] proposed to
generate 3D meshes by manipulating objects with rich shape fea-
tures but minimal textural variations. These 3D-based adversarial
attack methods are closely related to our goal of injecting adver-
sarial perturbations in volumetric videos. However, studies along
this line are still at an early stage and cannot be directly applied
to domain-speci�c applications such as volumetric video streaming.

Attacks on Face Authentication Systems. The most straightfor-
ward way to attack a face authentication system may be presenting
a facial biometric artifact of the victim user to the authentication
system. In such presentation attacks, a printed photo [11, 30, 80], a
3D face mask [8,43], or an electronic display of a photo or video [84]
have been exploited to successfully bypass the face authentication.
Even modern commercial face recognition systems like Microsoft
Windows Hello [13, 80], Apple's Face ID [8, 72], and payment au-
thentication systems of Alipay and Wechat have been bypassed by
such presentation attacks [43]. As countermeasures, face authen-
tication systems have also been evolving by adding features like
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depth matching and liveness detection [42, 48, 49]. These counter-
measures could e�ectively increase the di�culty level of presen-
tation attacks. However, even with the modern defense features,
the volumetric video still has the strong potential to constitute a
face authentication attack given the liveness and 3D features of
its video content. In other words, there exists minimum di�erence
between the 3D face model in volumetric video and the real human
face to be distinguished by a face authentication system.

End-to-End Encryption and Video DRM. End-to-end encryp-
tion can be an e�ective approach to protect the con�dentially of
data in networked systems in general and video streaming in partic-
ular. In fact, state-of-the-art video DRM mechanisms [4, 5, 23] rely
on end-to-end encryption to protect the commercial video stream-
ing services (e.g., Net�ix [44]) from piracy or illegal broadcasts.
However, under the context of volumetric video streaming, the
end-to-end encryption or video DRM mechanisms are not su�cient
to address the face authentication attack targeted byVVSec, for the
following reasons.First,the content of the video must be decrypted
before being displayed to the end user, and it has been shown to
be feasible for the adversaries to retrieve the decrypted content in
memory by reverse-engineering the memory access pattern [79]
or through potential vulnerabilities in modern processors such as
Spectre [47], Meltdown [54], and ZombieLoad [69]. Second, even if
the con�dentially of the data in memory is not compromised, the
nature of the video viewing experience determines that the video
can still be re-captured by the attacker from the screen after it is
displayed. The re-captured video can be exploited to bypass the
face authentication even with lower resolution than the original
video, as the deep learning-based face authentication is in general
non-sensitive to the resolutions of the input images. Therefore, a
content-based video obfuscation likeVVSecis desirable to protect
the volumetric video before it is ever exposed to the potential attack
surfaces.

7 LIMITATIONS AND DISCUSSIONS
Despite the e�ectiveness of both the proposed attack and defense
mechanisms, as supported by our experimental results,VVSecat
the current stage still has a number of limitations that we would
like to discuss and explore in our future work, including the consid-
eration of the depth channel in perturbation generation, the timing
overhead, and the QoE evaluation.

Adversarial Perturbation on the Depth Channel. Most of the
adversarial attack studies to date focus on adding perturbation to
the RGB domain, instead of the depth domain. The current version
of VVSecalso leverages only the RGB domain in the adversarial
perturbation generation algorithm. The aforementioned recent re-
search e�orts on 3D adversarial attacks [40,81,82,88] could provide
us with a viable option to enhanceVVSec, e.g., by leveraging the
depth channel and further reducing the human perceivable pertur-
bations in the RGB domain, which could potentially contribute to
reducing the timing overhead as well.

Timing Overhead of Adversarial Perturbation Generation.
An obvious limitation in the currentVVSecsystem is that the timing

overhead of generating the adversarial perturbation is relatively
high, i.e., 3 to 9 seconds per image as shown in Figure 7. This restricts
the applicability ofVVSecto o�ine processing and VOD stream-
ing only without the support of live streaming. The high timing
overhead is caused by the iterative, optimization-based adversarial
perturbation generation process, which we plan to improve with a
brand new learning-based algorithm in the future to achieve real-
time performance required by the live streaming use case. Given the
recent advancements in real-time adversarial attacks [33, 52, 62],
we believe that the objective of real-timeVVSecis feasible with the
unique challenges in the 3D domain that we aim to focus on.

QoE Evaluation. In this work, we adopt the L2 norm as the metric
to quantify the impact of the perturbation posed to the quality of the
volumetric video. Although the L2 norm is the most commonly used
and the standard metric in the deep learning community to evaluate
the quality impact of adversarial attacks [26, 73], it is still not a
standard QoE metric for video streaming in general and volumetric
video streaming in particular. As an alternative, we have explored
the possibility of using other objective QoE metrics for volumetric
video; however, at the time of writing this paper, there have been
no e�ective QoE metrics developed in the �eld of volumetric video
given that it is still an emerging research area. Such observation
is also con�rmed by other researchers in the area of volumetric
video streaming [64] and in the related �eld of 360-degree video
streaming [24]. In our future work, we plan to further explore the
e�ective QoE metrics and/or conduct subjective user studies to
improve the QoE evaluation ofVVSec.

8 CONCLUSION
We for the �rst time investigated the security and privacy issues
in volumetric video streaming originated from the rich user infor-
mation involved in the 3D objects. Our exploration began with the
development of a threat model, which compromises deep learning-
based face authentication mechanisms through e�ectively extract-
ing the 3D face models from the volumetric video. Then, we devel-
oped a countermeasure, namelyVVSec, to secure the volumetric
video via a benign use of adversarial perturbation generation. We
showed that volumetric videos with perturbations generated by
VVSeccan e�ectively defend against the face authentication at-
tack. Also, it poses no impact to the normal use case of volumetric
video viewed by human end users thanks to the minimum and
non-perceivable perturbations. We evaluated the e�ectiveness and
performance ofVVSecusing an empirical volumetric video, as well
as a large number of 3D face images with various poses obtained
from a RGB-D face dataset. To motivate further volumetric video
security research, we have open-sourcedVVSecvia a GitHub repos-
itory [19].
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